
1

Optimization-Based Animation

Victor J. Milenkovic

Harald Schmidl

University of Miami, Florida

Goal
Animate many crowded rigid bodies.

Problem
Motion may be highly complex, even within one
frame time.

A single body may have many collisions with its
neighbors within 1/30 second.

Frame configuration depends on many events not
visible in animation.

Solution
Generate plausible motion.

Use iterated QP (quadratic programming) to
generate positions/orientations, momenta, and
forces at each frame time.

Eye is “fooled” because brain cannot calculate
complex inter-frame collisions.

If still not realistic enough, hybridize with true
animation to trade off running time and realism.

Outline
Related work

Position update

Momentum update

Acceleration (Force) calculation

Hybrid approach

Movie

Experiments

Future work

Conclusions

2

Related Work
(Plausible Animation):
Position-Based Physics
Milenkovic SIGGRAPH 96

+Can animate 1000 spheres in an “hourglass”.

+Requires only 1 minute/frame on 1GHz PC.

-Zero-th order physics: no bouncing, friction,
rotation, parabolic paths.

-Acceleration has to be “faked”.

Related Work (True Animation):
Time-Warp

Mirtich SIGGRAPH 00

+Desynchronizes collisions for bodies in different
contact groups.

+Up to N times faster than synchronized methods.

-No desynchronization within one contact group.

-“Optimal” algorithm for “intractable” problem.

OBA Position Update: Target
Positions/Orientations
Bodies have linear and angular positions, velocities,
and accelerations. Positions are updated in two-
step process.

1. Calculate positions/orientations at next frame
time under second order physics ignoring collisions
--> target positions.

2. Calculate non-overlapping positions which
minimize “distance” to target positions
--> update positions.

OBA Position Update:
Distance to Target Positions
Calculate (linear and angular) displacement from
(proposed) UPDATE position to TARGET position

Plug displacement into formula for kinetic energy
in place of velocity.

Heavy objects “push aside” light objects.

Also experimented with other positive-definite
quadratic objectives.

OBA Position Update:
Converting to Iterated QP
Milenkovic 98: Rotational Compaction

Moves many rigid 2D polygons to non-overlapping
positions/orientations which minimize a linear
potential energy function.

Uses iterated LP (linear programming).

Generalize this algorithm to 3D polyhedra and a
quadratic objective.

Rotational Compaction:
A Few More Details
Decompose bodies into convex components.

Add separating plane for (some) pairs of convex
components.

Add two additional variables per separating plane.

Add half-space constraints and linearize.

Solve resulting QP.

Iterate.

3

Position Update Optimization
Variables: linear and angular displacements (and
separating plane orientations).

Objective: “distance” to target--plug displacements
to target into formula for kinetic energy in place of
velocities.

Constraints: bodies cannot overlap (linearized
half-plane constraints).

Collision and Static Contact
Response
Collisions: negative relative normal velocity;
change body momenta with instantaneous
impulses.

Static contacts: zero relative normal velocity;
forces act over time.

Position update generates many simultaneous
contacts: simultaneous QP models.

Friction is essential for physical realism.

Momentum Update

QP: simultaneous equal and opposite impulses at
all colliding contacts (conservation of momenta).

Instantaneously change the body momenta.

Have a right-handed collision frame.

Impulses satisfy the empirical collision law.

Impulses push, but don’t pull!

Impulses must satisfy the Coulomb friction law.

Introduce a friction cone: axis , slope .

Confine impulse to the inside of the linearized
cone.

nv µ/1=s

j
v

Implementation as a QP
Variables: body velocities and contact impulses.

Objective: total kinetic energy of all bodies after
impulses (TD).

Constraints: impulses lie in linearized friction cones,
and the collision law is satisfied.

Acceleration (Force) Calculation
Simultaneous QP model.

Reuse collision frame.

We can calculate the relative contact acceleration
(Baraff, SIGGRAPH 89).

Note: there is a problem in our paper, constant
velocity-dependent terms are missing.

4

Frictionless Case (QP)
Variables: body accelerations.

Objective: plug accelerations into sum of potential
and kinetic energies (SQP).

Constraint: non-negative contact normal
accelerations.

Note: the contact forces are implicit.

We verified empirically that this objective gives the
exact force solution for the frictionless case.

Attempted to extend this to friction.

Friction Case
Introduce a friction-less acceleration cone
constraint that mimics true friction.

This cone is perpendicular to the (dashed) force
cone.

Friction Case (QP)
Constraints: add to the frictionless QP the
acceleration cone constraints.

Iterative update process can require excessive
number of iterations.

We can impose a limit without visual instabilities.

Probably not better than standard methods:
pivoting or penalty force methods.

We are working on something improved.

Friction Case (QP)
Constraints: add to the frictionless QP the
acceleration cone constraints, and iterate.

Probably not better than standard methods:
pivoting or penalty force methods.

We are working on something improved.

Hybrid Scheme
We generate target positions by ignoring collisions:
these positions can be unrealistic.

Implement hybrid with retroactive detection (RD):
allow limit of collisions for each pair, then ignore
collisions.

Use heuristic to determine “bad” collisions.

Trade off speed for realism.

5

Movie Experiments and Results
Cost determined by QP solving.

Solving QP depends on number of constraints.

PSD: theoretical cost is polynomial of a high
degree.

Efficiency governed by position update (>50%):
#constraints is proportional to #bodies n.

We achieve O() with CPLEX v7.0.
2n

Future Work
• Better QP-based acceleration calculation.

• Other domains.

• Improve interaction with a priorianimation.

• Alternatives to the hybrid method.

• Parallel/distributed computation.

Conclusions
• OBA allows efficient and stable simulation of
large systems.

• It generates plausible motion.

• Uses readily available mathematical programming
software.

• Bouncing and Newtonian trajectories.

• OBA can handle links and non-convexity.

• Hybrid approach to trade off speed for realism.

